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Abstract

Recent booming time series models have demonstrated remarkable forecasting
performance. However, these methods often place greater focus on more effectively
modelling the historical series, largely neglecting the forecasting phase, which
generates long-term forecasts by separately predicting multiple time points. Given
that real-world time series typically consist of various long short-term dynamics,
independent predictions over individual time points may fail to express complex
underlying patterns and can lead to a lack of global views. To address these issues,
this work explores new perspectives from the forecasting phase and proposes a
novel Implicit Forecaster (IF) as an additional decoding module. Inspired by decom-
position forecasting, IF adopts a more nuanced approach by implicitly predicting
constituent waves represented by their frequency, amplitude, and phase, thereby
accurately forming the time series. Extensive experimental results from multiple
real-world datasets show that IF can consistently boost mainstream time series
models, achieving state-of-the-art forecasting performance. Code is available at this
repository: https://github.com/rakuyorain/Implicit-Forecaster.

1 Introduction

Time Series Forecasting (TSF) is the task of predicting future trends and dynamics of time series
based on historical observations. It is essential for many real-world applications, including weather
forecasting [52, 28], energy management [21, 3], and traffic flow estimation [1, 32]. In the past few
years, the advancement of deep learning has enabled neural forecasting methods to take a significant
place in the TSF landscape. Neural networks, especially Recurrent Neural Networks (RNNs) [10, 11],
are particularly effective on TSF due to their ability to capture sequential information. Convolutional
Neural Networks (CNNs) [12, 51], with their strength in recognising intricate temporal structures and
local patterns, excel at extracting features from time series. By modelling dependencies between a
sequence of representations, Transformers have demonstrated superior ability in learning inter-series
[13] and intra-series [20] information, thus becoming state-of-the-art in TSF.

Despite these achievements, existing TSF methods primarily focus on improving the modelling of
historical time series, while more precisely translating the modelled features into future series during
the forecasting phase is rarely considered. Specifically, previous works typically use elaborately
designed architectures to learn and transform the input time series into complex representations, and
then leverage MLPs to predict these representations separately into the value of each future time step,
thereby generating the output series. We noticed that this scheme of independent prediction between
consecutive points might not be suitable for long-term forecasting, given that native MLPs lack a
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Figure 1: Decomposition of a time series into sub-components. Left: illustrates the breakdown of a
simple time series into its constituent parts, each reflecting fluctuations over different frequencies.
Right: provides a complete view of each individual component to clearly visualise how the combina-
tion of different periodic fluctuations forms the observed time series.

global view of time series’ overall fluctuations [45] and are unable to handle the autocorrelation among
predicted points, which may hinder them from forecasting and expressing general trends and long-term
patterns. Besides, real-world time series often exhibit a mixture of long short-term dynamics, yet point-
wise MLPs directly predict the intertwined original series while ignoring this compositional structure.
This results in a forecasting process that lacks the understanding of underlying patterns, which
not only increases forecasting difficulty but can also produce indistinguishable and uninterpretable
predictions over various dynamics.

Considering the numerous underlying dynamics, it is apparent from Figure 1 that a time series can be
regarded as a combination of multiple different types of fluctuations, where long-period fluctuations
can reflect the overall trend of the time series and short-period fluctuations can indicate the seasonality.
Extensive research [41, 54, 49, 36] has proven that forecasting future time series by separately pre-
dicting its trend and seasonal components can enhance performance. This decomposition forecasting
approach further highlights the potential to forecast future series by predicting more nuanced trends
and dynamics. Consequently, we pose the following question: Is it feasible to form the future time
series by globally predicting constituent fluctuations across different periodicities?

In light of the aforementioned problems and motivations, we explored the forecasting phase of TSF,
focusing on accurately translating the learned information into actual forecasts. In this paper, we
propose Implicit Forecaster (IF), a novel decoding module that replaces the output layers of previous
TSF methods. IF offers a different forecasting perspective: instead of predicting future time points
separately, it globally forms the time series by combining various base fluctuations, where these
fluctuations are treated as periodic waves that can be implicitly represented and predicted just by
their frequency, amplitude, and phase. Experimentally, IF is compatible with recent mainstream TSF
models and can consistently boost their forecasting performance, making them state-of-the-art on 14
real-world datasets widely used in TSF and improving the result by a large margin on several of them.
The contributions of our work lie in three folds:

• We refine the forecasting phase of TSF and propose Implicit Forecaster to replace the
output layers of existing TSF models. It globally predicts various constituent waves from a
frequency perspective to achieve accurate long-term time series forecasting.

• Experimentally, the proposed Implicit Forecaster can be applied to mainstream TSF models,
boosting their performance by a large margin and achieving consistent state-of-the-art on
multiple real-world benchmarks.

• We show that a better forecasting phase also matters for accurate TSF, an aspect largely
overlooked by existing research. We hope our work can draw research attention to this
critical point and inspire novel advancements.
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2 Related Work

2.1 Time Series Forecasting with Deep Models

In the rapidly evolving field of time series forecasting, deep learning-based methods have garnered
significant attention and attained remarkable success. RNNs have been favoured for their proficiency
in handling sequential data. LSTNet [10] integrates convolutional layers into recurrent structures,
effectively learning long short-term patterns. SegRNN [11] reduces recurrent steps by leveraging
Segment-wise Iterations and Parallel Multi-step Forecasting strategies, achieving notable performance
and efficiency. CNNs excel in learning local temporal patterns underlaid in time series, where
MICN [34] employs multiple convolutional kernels to capture local features and global correlations,
offering holistic views of time series. TimesNet [40] extends 1D time series into 2D space for
better time series representation, thereby extracting multi-periodicity information. MLPs, built upon
linear transformations, have demonstrated impressive forecasting accuracy while maintaining high
computational efficiency. TimeMixer [36] utilizes a decomposable multiscale mixing, capturing
temporal patterns at different granularities. SOFTS [4] introduces the STar Aggregate-Redistribute
(STAR) module, aggregating global information across channels to capture inter-series correlations.

Transformer [27], as the most prominent sequence modelling architecture that achieved exceptional
success in natural language processing [39] and computer vision [2], has emerged as the most
popular approach for solving TSF problems. Autoformer [41] combines traditional time series
decomposition with auto-correlation to extract better predictive components. PatchTST [20] adopts
a Vision Transformer-like strategy, segmenting time series into smaller patches to better model
intra-series dependencies. Crossformer [50] and CARD [37] explore interdependencies between
patches across channels, concurrently learning cross-time and cross-variate information. iTransformer
[13] treats the entire time series as an individual token to model series-wise dependencies, thereby
explicitly learning multivariate correlations.

Given that time series forecasting is an end-to-end process, previous methods predominantly con-
centrated on optimizing the “historical series to representation” stage. Our work, however, shifts the
focus to the “representation to predicted series” stage, bridging the gap in the forecasting phase.

2.2 Time Series Forecasting with Fourier Analysis

Fourier analysis offers methods for effectively modelling the underlying dynamics within time series.
Recent advancements demonstrated that integrating frequency-domain techniques can enhance the
performance of TSF. FEDformer [54] employs frequency-enhanced attention for efficient computation
while better capturing the global properties. FiLM [55] applies Legendre Polynomial projections
to approximate historical information and remove noise. FreTS [45] applies MLPs directly to
the frequency domain, learning the mappings of time series in the complex plane. FreDF [30]
proposes a new loss term to penalize forecasting errors within the frequency domain, enhancing the
autocorrelation between predicted points. OLinear [46] operates in an orthogonally transformed
domain to better model time series and utilizes a normalized weight matrix to efficiently capture
multivariate correlations. FreEformer [47] further leverages a frequency-enhanced Transformer
to model cross-variate dependencies in the complex domain, introducing an enhanced attention
mechanism that improves feature diversity and gradient flow. In contrast to these methods, which
primarily focus on leveraging Fourier analysis to model the historical time series, our approach
explores a novel strategy that incorporates frequency techniques in the forecasting phase, aiming to
achieve more accurate pattern predictions and address the lack of global views of output series.

3 Methodology

Problem Definition Consider a T length multivariate time series with N number of variates,
represented as X = {x1,x2, . . . ,xT } ∈ RT×N , where each xt ∈ RN corresponds to N concurrent
variates observed at time t. Also, consider the subsequent time series of X over a future horizon L,
denoted as Y = {xT+1,xT+2, . . . ,xT+L} ∈ RL×N . Given a forecasting model fθ parameterized
by θ that maps the historical time series X to its future forecast as Ŷ = fθ(X), where Ŷ =
{x̂T+1, x̂T+2, . . . , x̂T+L} ∈ RL×N , the objective of time series forecasting is to optimize θ such
that the forecast Ŷ closely approximates the true future Y.
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3.1 Implicit Forecaster

Figure 2: The overall architecture of Implicit Forecaster. The input time series will first be learned
and converted into hidden representations via the encoder part of other time series models. The
proposed Implicit Forecaster then decodes such representations into amplitudes and phases of various
periodic waves, composing them into output series.

As depicted in Figure 2, our Implicit Forecaster mainly consists of an Amplitude Head (AHead),
a Phase Head (PHead), a Discrete Fourier Transform (DFT) module, and an inverse DFT (iDFT)
module. We will dissect its architecture around how it generates the forecasts in this section.

Encoder Integration IF receives two inputs for forecasting: 1) a hidden encoder representation that
can maximally capture the inherent information and temporal features of the input time series, and 2)
the original input time series provided by a skip-connection. Since IF mainly serves as an additional
decoding module for improving the forecasting phase, we take existing forecasting models (e.g., the
encoder part of TSF Transformers) as the time series encoder for learning the encoder representation,
and replace their output layers with IF. Given a multivariate time series X ∈ RT×N , learning the
encoder representation can be easily formulated as follows:

Xenc = TimeSeriesEncoder(X), (1)
where TimeSeriesEncoder : RT×N 7→ RN×D is the encoder module, Xenc ∈ RN×D is the encoder
representation of the input time series and D stands for the model dimension. Note that the encoder
representation is channel-separated over N , as IF independently forecasts each variate of time series.

Implicit Decoding In the forecasting phase, rather than directly predicting the learned information
into each output time point like conventional methods, IF implicitly predicts the constituent fluctua-
tions of the future time series. Concretely, for a desired forecast, IF presupposes a frequency pool
(i.e., a fixed-size spectrum) containing waves with different long short-term frequencies and separately
predicts the amplitude and phase of each wave. These implicitly represented waves will serve as
the constituent components and will be combined as the future time series, where the part within
the forecasting length will be cropped as the final output. Additionally, IF uses a skip-connection to
extract and incorporate the amplitude and phase information of the original input series, given that
such information is likely to persist throughout future observations, which will be concatenated to the
encoder representation as a supplementary feature map to assist the wave prediction.

Taking the encoder representation Xenc ∈ RN×D and the historical time series X ∈ RT×N as its
input, IF forecasts the future time series Ŷ ∈ RL×N as follows:

S = F(X⊤),

Â = AHead(Concat(Xenc, |S|)),
ϕ̂ = PHead(Concat(Xenc, arg(S))),

Ŷ = Crop:L(F−1(Â · ejϕ̂)⊤),

(2)
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where F denotes the Discrete Fourier Transform and F−1 is its inverse operation, and j is the
imaginary unit defined as the square root of −1. S ∈ CN×T is a complex matrix denoting the
spectrum of the original input X. |S| is the amplitude of each constituent wave from X and arg is
the argument operation that computes the phase of each constituent wave. AHead is the amplitude
predictor and PHead is the phase predictor. Suppose the frequency pool of IF contains P waves with
different frequencies to form the future time series, then Â ∈ RN×P

≥0 and ϕ̂ ∈ [−π, π]N×P denote
the predicted amplitudes and phases of these waves, respectively. We provide a detailed discussion of
IF in the next section.

3.2 Overall Workflow

In this section, we provide a comprehensive introduction to the internal components of Implicit
Forecaster, explaining the motivations behind various designs.

Discrete Fourier Transform and its Inverse IF aims at forming time series with various periodic
waves, while the DFT [26] and its inverse provide effective tools for representing and processing
these waves. By transforming a signal from the time domain into the frequency domain, DFT enables
the decomposition of a time series into its constituent frequency components, each represented by a
complex number that encodes both the amplitude and phase of the corresponding sinusoidal wave at
a certain frequency. Consider a univariate time series x = {x1, x2, . . . , xN} ∈ RN , we can convert
it to its spectral representation z = {z1, z2, . . . , zN} ∈ CN with N waves by DFT as follows:

zk =

N∑
n=1

xn · e−j2πk n−1
N = |zk| · ej arg(zk) = Ak · ejϕk , k = 1, . . . , N, (3)

where zk ∈ C corresponds to the complex of k-th wave components with a frequency of k−1
N . By

considering each wave component zk in a polar coordinate, |zk| = Ak =
√
Re(zk)2 + Im(zk)2 ∈

R≥0 represents its amplitude and arg(zk) = ϕk = atan2(Im(zk),Re(zk)) ∈ [−π, π] represents its
phase, where Re(zk), Im(zk) ∈ R are the real part and the imaginary part of zk, respectively.

On the other hand, the inverse DFT allows for the reconstruction of a time series from provided
frequency components with known amplitudes and phases. This feature is particularly critical for our
approach, as IF essentially seeks to predict amplitudes and phases of various waves with different
frequencies to implicitly represent underlying fluctuations of future time series, where the inverse
DFT is used to combine these waves to obtain the final forecast. Reversely, given amplitudes
A = {A1, A2, . . . , AN} ∈ RN

≥0 and phases ϕ = {ϕ1, ϕ2, . . . , ϕN} ∈ [−π, π]N of N waves, we can
construct a time series signal x = {x1, x2, . . . , xN} ∈ RN through inverse DFT as follows:

xn =
1

N

N∑
k=1

zk · ej2πn
k−1
N =

1

N

N∑
k=1

Ak · ejϕk · ej2πn
k−1
N , n = 1, . . . , N, (4)

where xn ∈ R is the n-th value in x and zk ∈ C is the complex of the k-th wave.

Frequency Pool Based on DFT properties, any length-L time series can be completely represented
as a linear combination of L wave components, where each wave corresponds to a normalized
frequency of fk = k/L, for k = 0, . . . , L − 1. Therefore, it is possible for IF to forecast such
time series just by predicting the amplitudes and phases of these L waves, while we can define
Pf = {f0, f1, . . . , fL−1} as the frequency pool of IF. However, we observed that there may exist
very long-period fluctuations in time series, such that the input time series or the forecast can only
encompass a small portion of their complete cycle. Given that these fluctuations operate at lower
frequencies than those that can be directly predicted by IF (i.e., beyond the IF’s frequency pool), they
can only be approximated and represented by blending the pool’s existing frequencies (a phenomenon
known as Spectral Leakage), which complicates the forecasting process.

To better capture these ultra-low-frequency components, we extend IF’s frequency pool. Specifically,
when forecasting a time series of length L, we consider increasing the size of the frequency pool to
P (P ≥ L), such that it contains frequencies fk = k/P for k = 0, . . . , P − 1. Consequently, IF
predicts the amplitudes and phases of P waves rather than L, allowing it to directly access and predict
lower-frequency components. This extension enhances the representational capacity of IF, enabling
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more accurate forecasting of time series with large-scale or slow fluctuations. Moreover, according to
the conjugate symmetry property of the DFT, the spectrum of a real-valued time series is symmetric,
where the second half is the complex conjugate of the first half. Therefore, in practical implementation,
IF only needs to predict the first half of its frequency-domain components to reconstruct the complete
time signal, substantially reducing computational cost.

AHead The Amplitude Head is essentially an MLP that maps the encoder representations to the
amplitudes of the waves in the frequency pool. To enhance information utilization, it also incorporates
the amplitude information derived from the original input time series, thereby obtaining a global
view of the input’s energy distribution and improving the accuracy of future amplitude prediction.
Given the n-th variate’s encoder representation Xenc,n ∈ RD and corresponding input amplitude
information An ∈ RT

≥0, the AHead can be formulated as follows:

AHead(Xenc,n,An) = |MLPamp(Concat(Xenc,n,An))| , (5)

where MLPamp : RD+T 7→ RP is a dense network with two layers for predicting the amplitude.

PHead The Phase Head is responsible for predicting the relative position of the waves in the
frequency pool, ensuring they are properly aligned within the forecasting window. However, directly
regressing raw phase values is challenging due to the inherent numerical discontinuity of phases
at their boundaries, where abrupt changes may occur from π to −π. Such discontinuities make
it difficult for IF to produce stable and consistent phase predictions. To mitigate this issue, we
adopt a continuous representation of phases by predicting their sine and cosine components instead.
Predicting these components ensures phases have a smooth transition across their periodic boundaries,
thereby facilitating a more accurate phase prediction. Therefore, taking the encoder representation
Xenc,n ∈ RD and input phase ϕn ∈ [−π, π]T of the n-th variate as its input, the PHead consists of
two MLPs and can be formulated as follows:

α̂n = Tanh(MLPsin(Concat(Xenc,n,ϕn))),

β̂n = Tanh(MLPcos(Concat(Xenc,n,ϕn))),

ϕ̂n = atan2(α̂n, β̂n),

(6)

where ϕ̂n ∈ [−π, π]P is the predicted phases of pool waves. α̂n, β̂n ∈ [−1, 1]P are the sine and
cosine components, and MLPsin,MLPcos : RD+T 7→ RP are their corresponding predictors.

4 Experiments

We conduct extensive experiments to evaluate the performance of mainstream TSF models equipped
with IF across various datasets and forecasting scenarios, comparing them with their original results
to analyze the effectiveness of IF.

Datasets We comprehensively include 14 benchmark datasets commonly used in TSF for our
experiments, covering various real-life domains such as energy, traffic, weather, economics, and
disease. Specifically, these datasets are ETT (Electricity Transformer Temperature) with 4 subsets,
ECL (Electricity Consuming Load), Traffic, Weather [53], Exchange Rate, ILI (Influenza-Like Illness)
[41], PeMS (Traffic data of Caltrans Performance Measurement System) with 4 subsets [12], and
Solar Energy [10]. We split each dataset into training, validation, and test sets in respective ratios of
70%, 15%, and 15%, with all datasets divided strictly in chronological order to prevent data leakage
issues. The validation set is used for monitoring the training loss of models, and the test set evaluates
the model’s final performance quantitatively. Lastly, all datasets are preprocessed with standardisation
based on the training set. Further descriptions for each dataset are provided in Appendix A.1.

Baselines We carefully select 7 well-acknowledged TSF models as our benchmark methods for
comparison. These methods are from a diverse range of model types (we choose the most competitive
method of each type), including: 1) one MLP-based method: SOFTS [4], 2) four Transformer-based
methods: TimeXer [38], iTransformer [13], PatchTST [20] and Crossformer [50], 3) one RNN-based
method: SegRNN [11], and 4) one CNN-based method: TimesNet [40]. These models will be paired
with IF to compare against their original performance, with all models being evaluated under the
same framework and environment. We provide a detailed introduction to baselines in Appendix A.2.
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Implementations All models are implemented entirely in Python and built upon PyTorch 2.0, with
baseline methods directly adopted from their official implementations. The experiments reported in
this paper were conducted on a 16-core AMD EPYC 9654 CPU and a single NVIDIA RTX 4090
GPU. We choose Adam optimizer [9] and L2 loss to learn the model parameters and take MSE
(Mean Squared Error) and MAE (Mean Absolute Error) as metrics to evaluate the models. More
implementation and experimental details are provided in Appendix A.3.

4.1 Main Results

Table 1 presents the forecasting performance of all models across 14 benchmarks, including their
results after being equipped with the proposed Implicit Forecaster (w/ IF), where better values are
bolded. Since MSE/MAE measures the discrepancy between the forecast and the ground truth, a
lower value indicates better model performance.

Table 1: Multivariate time series forecasting results, averaged over respective prediction lengths
L ∈ {24, 36, 48, 60} for the ILI dataset, L ∈ {12, 24, 48, 96} for the PEMS datasets, and L ∈
{96, 192, 336, 720} for the remaining datasets. The lookback window length is set to T = 36 for the
ILI and T = 96 for the others.

Models SOFTS w/ IF TimeXer w/ IF iTransformer w/ IF SegRNN w/ IF PatchTST w/ IF Crossformer w/ IF TimesNet w/ IF
(2024) (Ours) (2024) (Ours) (2024) (Ours) (2023) (Ours) (2023) (Ours) (2023) (Ours) (2023) (Ours)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh1 0.533 0.519 0.506 0.516 0.527 0.525 0.510 0.528 0.535 0.525 0.535 0.529 0.524 0.523 0.523 0.526 0.533 0.522 0.498 0.511 0.607 0.570 0.587 0.564 0.596 0.568 0.535 0.546
ETTh2 0.202 0.315 0.193 0.305 0.204 0.317 0.194 0.306 0.202 0.315 0.198 0.309 0.193 0.307 0.189 0.308 0.192 0.308 0.187 0.301 0.296 0.395 0.238 0.360 0.212 0.327 0.204 0.315
ETTm1 0.486 0.474 0.473 0.475 0.490 0.488 0.477 0.480 0.487 0.481 0.478 0.478 0.470 0.474 0.470 0.473 0.477 0.476 0.471 0.470 0.538 0.516 0.532 0.511 0.548 0.512 0.508 0.497
ETTm2 0.151 0.269 0.147 0.266 0.145 0.262 0.145 0.261 0.154 0.272 0.150 0.268 0.142 0.259 0.144 0.263 0.147 0.266 0.144 0.262 0.203 0.319 0.183 0.304 0.155 0.271 0.148 0.264

ECL 0.170 0.258 0.165 0.261 0.166 0.265 0.161 0.257 0.172 0.261 0.167 0.264 0.181 0.275 0.186 0.277 0.199 0.289 0.184 0.274 0.212 0.308 0.193 0.294 0.190 0.289 0.188 0.291

Traffic 0.433 0.286 0.429 0.287 0.480 0.297 0.629 0.343 0.434 0.292 0.497 0.333 0.639 0.326 0.573 0.315 0.489 0.317 0.470 0.308 0.575 0.326 0.546 0.336 0.614 0.336 0.593 0.359

Weather 0.236 0.261 0.229 0.270 0.221 0.254 0.221 0.260 0.237 0.261 0.225 0.261 0.230 0.281 0.227 0.277 0.237 0.262 0.229 0.262 0.242 0.305 0.253 0.313 0.241 0.270 0.231 0.269
Exchange 0.424 0.454 0.402 0.438 0.397 0.433 0.395 0.434 0.427 0.458 0.412 0.449 0.440 0.446 0.294 0.393 0.441 0.454 0.422 0.446 0.798 0.654 1.338 0.825 0.425 0.456 0.420 0.454

ILI 2.893 1.122 2.827 1.120 3.134 1.174 2.938 1.147 2.991 1.164 2.871 1.119 4.631 1.432 3.641 1.246 3.365 1.155 3.185 1.127 4.246 1.440 5.128 1.592 3.264 1.162 3.734 1.177

PEMS03 0.107 0.214 0.109 0.216 0.122 0.235 0.102 0.209 0.414 0.392 0.209 0.293 0.196 0.298 0.159 0.270 0.252 0.341 0.159 0.263 0.167 0.279 0.146 0.259 0.175 0.260 0.106 0.208
PEMS04 0.112 0.223 0.107 0.216 0.113 0.231 0.098 0.207 0.187 0.282 0.124 0.234 0.233 0.328 0.191 0.296 0.334 0.393 0.186 0.290 0.232 0.331 0.132 0.249 0.222 0.325 0.117 0.232
PEMS07 0.096 0.195 0.092 0.195 0.100 0.205 0.078 0.178 0.884 0.629 0.149 0.249 0.211 0.302 0.174 0.272 0.275 0.351 0.173 0.267 0.196 0.290 0.155 0.259 0.167 0.280 0.109 0.215
PEMS08 0.118 0.218 0.107 0.212 0.144 0.260 0.108 0.217 0.860 0.626 0.179 0.284 0.232 0.320 0.176 0.282 0.301 0.371 0.172 0.276 0.220 0.317 0.142 0.257 0.210 0.315 0.128 0.242

Solar 0.222 0.253 0.207 0.253 0.239 0.290 0.231 0.272 0.241 0.278 0.228 0.271 0.244 0.298 0.238 0.286 0.240 0.288 0.229 0.272 0.299 0.344 0.222 0.283 0.260 0.273 0.212 0.270
Promotion — — 3.71% 0.60% — — 4.97% 3.54% — — 18.5% 11.0% — — 10.4% 5.12% — — 14.5% 8.82% — — 6.62% 4.07% — — 14.3% 7.22%

Compared with the initial results, all baselines equipped with IF exhibit consistently improved
performance, demonstrating obviously lower MSE/MAE across most of the datasets. This clearly
validates the effectiveness and generality of IF, indicating that decoding time series by implicitly
predicting and combining constituent components indeed leads to a more accurate forecast. Notably,
the performance gains are particularly pronounced on PEMS datasets, in which all models outperform
their original results with average decreased MSE and MAE of 30.4% and 18.2%. We attribute
these substantial improvements to IF’s ability to directly access low-frequency waves and to perform
separated predictions over long short-term patterns, which facilitates forecasting time series that
are mixed with extreme fluctuations and rapid changes, such as PEMS. Furthermore, it is evident
from the table that the average improvement of IF in MSE is more significant than that in MAE,
revealing that IF produces globally more precise forecasts, and predicting frequency components does
offer a more holistic view of the future series. Finally, the experimental results also imply that the
encoders of these models are actually capable of extracting useful information from the data, while
their original point-wise decoding schemes are insufficient to fully leverage the learned information.

4.2 Method Analysis

In this section, we further analyze the proposed Implicit Forecaster. For a fair comparison, all models
in the following experiments will adopt the same time series encoder: a standard Transformer encoder
with an inverted time series embedding [13].

Ablation study We gradually replace/adjust the proposed module/mechanism, thereby investigating
their contribution to the method’s overall performance. We consider two ablations: 1) IF: we replace
IF with other decoders, including Linear forecaster that is common in recent works [4, 13, 20, 31],
MLP forecaster with the same nonlinear process and parameter amount as IF, and the traditional
Transformer decoder, 2) Skip-connection: to ensure that the strong performance of IF is not attributed
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to its skip-connection, we test the effectiveness of the skip-connection, including disabling it (w/o)
and only using it (only, i.e., without using the time series encoder).

Table 2: Ablations of IF. This table presents
the standard Transformer’s average performance
across various forecasting lengths when equipped
with different decoders.

Transformer Decoder

Replace IF Linear MLP Transformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE
ETTh2 0.188 0.301 0.201 0.313 0.199 0.311 0.202 0.316

Exchange 0.286 0.384 0.411 0.442 0.428 0.448 0.412 0.454

ILI 2.387 1.018 2.689 1.107 2.486 1.040 3.504 1.282

PEMS08 0.103 0.209 0.184 0.272 0.198 0.278 0.167 0.272

Performance 100% 100% 77.0% 88.0% 77.3% 88.9% 73.1% 84.0%

Table 3: Ablations of skip-connection. This
table details the impact of adjusting the skip-
connection in IF.

IF Skip-connection

Replace w/ Skip. w/o Skip. only Skip.

Metric MSE MAE MSE MAE MSE MAE
ETTh1 0.503 0.516 0.537 0.521 0.617 0.577

ECL 0.157 0.256 0.160 0.254 0.210 0.300

Weather 0.221 0.259 0.227 0.257 0.250 0.291

Solar 0.189 0.251 0.190 0.251 0.284 0.345

Performance 100% 99.9% 97.2% 100% 77.8% 84.0%

From Table 2, we can clearly witness that changing IF to other decoders results in significant
degradation of the model performance. This supports that when processing equivalent input from the
encoder, IF is considerably better at transforming high-level time series representations into more
precise forecasts, which underscores its substantial effectiveness. As a comparison, particularly on the
PEMS dataset, Linear forecaster performs much poorer than IF, revealing that point-wise prediction
can struggle in handling long-term patterns. Besides, MLP forecaster is still inferior to IF, which
implies that the superiority of IF is not own to nonlinear transformation, but rather to the success
of the pattern-separated forecasting method. Notably, the Transformer decoder performs the worst
among these forecasters, indicating conventional heavy decoder designs may be overly complicated
and thus susceptible to noise interference.

From the results in Table 3, the skip-connection in IF contributes effectively to some of the datasets, in
which disabling it only leads to a performance degradation of 2.8% in MSE, indicating its influential
but not decisive role in our method’s strong performance. Besides, using only skip-connection also
shows good forecasting performance, proving that the frequency-domain information in the input
time series can associated with future observations, thus can provide effective features for forecasting.

Table 4: The computational cost of different forecast-
ers across various datasets. The results are measured
over the prediction length of L = 96 for the PEMS08
dataset and L = 720 for the rest of the datasets.

Decoder IF Linear MLP Transformer

ETTh1 Speed (ms/iter) 14.12 12.11 11.45 14.44
Memory (GB) 0.241 0.190 0.217 0.251

ECL Speed (ms/iter) 65.43 59.73 64.05 68.57
Memory (GB) 1.119 0.791 0.888 1.164

Weather Speed (ms/iter) 19.23 17.51 17.76 20.43
Memory (GB) 0.388 0.328 0.352 0.406

PEMS08 Speed (ms/iter) 34.48 28.17 31.25 43.48
Memory (GB) 0.899 0.538 0.637 0.940

Computational efficiency We use the
standard big-O asymptotic notation for an-
alyzing the time complexity of IF. Accord-
ing to the symmetric properties in the fre-
quency domain described in Section 3.2,
for a frequency pool size P , there will be
3
2P + 3 output neurons in IF used for mak-
ing predictions (P2 + 1 neurons for predict-
ing amplitudes, sine of phases and cosine of
phases, respectively). Therefore, the forward
pass complexity of IF is simply bounded by
O(P ). However, after predicting frequency-
domain features, an iDFT is applied to re-
construct the time signal. The iDFT can be
implemented efficiently with a complexity
of O(P logP ) using FFT-based algorithms. Combining both terms, the total time complexity of
IF is: prediction complexity + iDFT complexity = O(P + P logP ) = O(P logP ). Conventional
point-wise forecasters, in contrast, predict future values independently at each time step, with distinct
output neurons corresponding to different time points. Hence, their overall computational complexity
is O(L). In experiments, we measured the training speed (ms/iter) and memory footprint (GB) of IF,
comparing its computational cost with other forecasters. The results are provided in Table 4, showing
that IF has a higher computational cost compared to simpler forecasters such as Linear or MLP, yet it
remains more efficient than the Transformer decoder, thus this additional cost does not represent a
significant disadvantage.

8



Varying lookback length The previous methods [13] have verified that treating the entire time
series as a token and learning from the variate dimension can benefit the model from a longer lookback
window, achieving more accurate forecasting. Considering this can be attributed to the encoder, we
believe that the distinct advantages of decoders only emerge with a shorter input. Therefore, we take
another perspective that varies the lookback window size from long to short, further validating IF’s
effectiveness compared to point-wise decoding methods. Figure 3 shows performance changes of
Transformer when shortening the input length, where the results surprisingly exhibit that using IF
as the decoder not only outperforms the Linear forecaster across all input lengths but that the gap
even widens as the input length reduces. This reveals that adopting IF as the decoder could also
empower the model’s robustness under limited input data, illustrating its unique strength in extracting
maximum details from minimal information.
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Figure 3: Forecasting performance of Transformer when equipped with Implicit Forecaster (green)
and Linear forecaster (yellow) after shortening the lookback window to T ∈ {96, 72, 48, 24}. Results
are averaged over all prediction lengths, where Implicit Forecaster consistently outperforms Linear
forecaster, especially for shorter input lengths.

Visualization analysis Implicitly predicting constituent fluctuations with IF also offers better
interpretability. Figure 4 shows a case visualization from the ECL dataset, where the left heat map
illustrates the absolute weights learned by AHead for the waves in IF’s frequency pool. These higher-
weighted frequencies can be regarded as the most influential ones identified across the entire training
set. The right heat map displays the corresponding predicted energy distribution (i.e., amplitudes) for
these frequencies. We can clearly observe that frequencies with larger weights tend to concentrate
higher energy, indicating that IF not only learns which frequencies are important but also actively
allocates more representational capacity to them during forecasting. This pattern suggests that IF
implicitly captures the dominant periodic components driving the whole temporal dynamics, offering
an interpretable decomposition for the forecasting process.

Figure 4: Weights and Prediction Visualisation. The x-axis corresponds to IF’s frequency pool.

How does IF solve the problem of lacking global views in previous methods?

Frequency components can capture global characteristics of time series, as they are computed from
the entire series. This global property has been validated by many forecasting methods and utilized
to enhance the model’s global views when learning the input [54, 45]. Accordingly, we believe
that they can also be used to globally express the output when making predictions. Therefore, the
proposed IF module predicts amplitudes and phases of frequency components, and these components
are computed as global fluctuations of future series, improving global views of the forecasting phase.
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4.3 Limitation Analysis

Despite its strong forecasting capabilities, our Implicit Forecaster still exhibits opportunities for further
enhancement in terms of efficiency and overall performance. For example, predicting all spectral
components may introduce some inefficiencies, as selectively focusing on the more contributive
frequencies could potentially reduce computational overhead without significantly compromising the
forecasts’ accuracy. Besides, employing a fixed-size frequency pool might occasionally be suboptimal,
as a manually defined spectrum might not precisely align with the optimal frequencies that best
fit the dataset. Moreover, while the Implicit Forecaster is primarily tailored for forecasting tasks,
exploring its adaptations across different scenarios could provide additional values. By highlighting
these limitations, we aim to encourage further research to refine our method.

5 Conclusion

In this paper, we improve the forecasting phase of recently booming TSF methods, which have
lacked attention in previous works. We propose Implicit Forecaster, a novel decoding module to
replace the output layers of existing forecasting models. It predicts learned historical information into
various implicitly represented constituent waves and effectively combines them to form the forecast.
Experimental results demonstrate that our Implicit Forecaster can enhance the performance of current
mainstream forecasting models, achieving consistent state-of-the-art on multiple real-world datasets.
We discover that the forecasting phase of TSF can be an interesting and compelling point of research.
Future improvements may include: 1) efficient decoding by predicting key frequencies only, and 2)
accurate prediction for localized patterns by incorporating other frequency methods (e.g., Wavelets).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction of this paper precisely encapsulate the core claims
and contributions of our study, aligning closely with the experimental results presented.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper thoroughly discusses the limitations of the methods proposed, which
are detailed in Section 4.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide comprehensive details and formulations necessary for reproducing
the main experimental results, including the model architecture, mechanisms, datasets,
baselines, metrics, and experiment configurations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include open access to all source code in the abstract, covering the experi-
mental framework, our method, baseline models, and detailed experiment configurations,
together with all models’ corresponding scripts and execution commands. We also provide
a direct download link for all well-prepared datasets, including step-by-step instructions for
running the experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide relevant training and test details in the main text and appendix. This
includes dataset details (e.g., data splits, preprocessing methods, etc.) and implementation
details (e.g., optimizer, loss function and metrics).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We test the robustness of our model across five runs with different random
seeds and report the error bars of our model’s performance in the appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information on the computing resources required to
reproduce each experiment in the main text and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have thoroughly reviewed the NeurIPS Code of Ethics and ensured that
our research conforms to these guidelines in every aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: Our work only focuses on technical improvements to existing models without
detailing direct applications or deployments. As such, it does not present immediate societal
impacts, making discussions on potential societal effects not applicable.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The focus of this research is on improving time series forecasting techniques,
which do not involve the release of data or models that pose a high risk for misuse, so there
are no specific safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In our paper, we ensure proper attribution for all externally sourced assets,
including publicly available code and datasets. Each source code and dataset used in this
work is explicitly credited with clear citations to the original papers, repositories, and
websites.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work only focuses on the time series forecasting problem and does not
involve crowdsourcing experiments or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: Our research does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM (e.g., GPT-4o) is used only for grammar checking.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experimental Details

A.1 Dataset Descriptions

We use 14 real-world datasets to comprehensively evaluate the performance of baseline methods on
the long-term time series forecasting task. Detailed descriptions of these datasets are as follows:

ETT2 [53]: The Electricity Transformer Temperature dataset records oil temperatures and multiple
power load situations collected from two counties in China between July 2016 and July 2018. It
consists of four subsets with different time granularities: ETTh1 and ETTh2 are sampled every hour,
while ETTm1 and ETTm2 are sampled every 15 minutes.

ECL3 [53]: The Electricity Consuming Load dataset records the hourly electricity consumption (in
kWh) of 321 clients over the period from 2012 to 2014.

Traffic4 [41]: The Traffic dataset records road occupancy rates on San Francisco Bay area freeways,
measured hourly by 862 sensors from January 2015 to December 2016, sourced from the California
Department of Transportation.

Weather5 [53]: The Weather dataset from the Max Planck Biogeochemistry Institute in Germany
records 21 meteorological factors, such as air temperature and humidity. This climatological time
series is sampled every 10 minutes throughout the entire year of 2020.

Exchange Rate [43]: The Exchange dataset compiles daily exchange rate panel data for eight
countries, including Australia, Britain, Canada, Switzerland, China, Japan, New Zealand, and
Singapore, covering the period from 1990 to 2016.

ILI6 [25]: The Influenza-Like Illness dataset captures the weekly ratio of influenza-like illness
patients to the total number of patients, reported by the Centers for Disease Control and Prevention
of the United States from 2002 to 2021.

PeMS [12]: This transportation dataset provided by the Caltrans Performance Measurement System
records California traffic features like flow, occupancy, and speed. We use four of its public subsets:
PEMS03, PEMS04, PEMS07, and PEMS08, each with the same sampling rate of 5 minutes.

Solar Energy7 [10]: The Solar-Energy dataset records solar power production from 137 photovoltaic
(PV) plants in Alabama State for the year 2006, with data sampled every 10 minutes.

Table 5: Dataset details. Dim refers to the number of variates in the dataset. Input Length refers to
the number of historical timesteps used for making forecasts and Prediction Length denotes to the
number of future timesteps to be predicted. Dataset Size denotes the respective timepoints in training,
validation and test set. Frequency refers to the sampling interval between each timepoint.

Dataset Dim Input Length Prediction Length Dataset Size Frequency Domain

ETTh1, ETTh2 7 96 {96, 192, 336, 720} (12194, 2613, 2613) Hourly Temperature

ETTm1, ETTm2 7 96 {96, 192, 336, 720} (48776, 10452, 10452) 15min Temperature

Electricity 321 96 {96, 192, 336, 720} (18412, 3945, 3947) Hourly Electricity

Traffic 862 96 {96, 192, 336, 720} (12280, 2631, 2633) Hourly Transportation

Weather 21 96 {96, 192, 336, 720} (36887, 7904, 7905) 10min Weather

Exchange Rate 8 96 {96, 192, 336, 720} (5311, 1138, 1139) Daily Finance

Illness 7 36 {24, 36, 48, 60} (676, 144, 146) Weekly Health

PEMS03 358 96 {12, 24, 48, 96} (18345, 3931, 3932) 5min Transportation

PEMS04 307 96 {12, 24, 48, 96} (11894, 2548, 2550) 5min Transportation

PEMS07 883 96 {12, 24, 48, 96} (19756, 4233, 4235) 5min Transportation

PEMS08 170 96 {12, 24, 48, 96} (12499, 2678, 2679) 5min Transportation

Solar-Energy 137 96 {96, 192, 336, 720} (36792, 7884, 7884) 10min Energy

2https://github.com/zhouhaoyi/ETDataset
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4http://pems.dot.ca.gov
5https://www.bgc-jena.mpg.de/wetter/
6https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
7http://www.nrel.gov/grid/solar-power-data.html
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A.2 Baseline Descriptions

We carefully select 7 mainstream TSF models as baselines for comparison, which are representative
methods from diverse model types. Detailed descriptions of these baselines are as follows:

SOFTS [4]: SOFTS is an MLP-based method that leverages a STar Aggregate-Redistribute (STAR)
module to capture the core representation of time series for efficient and accurate forecasting. The
core representation is shared across channels and carries global information on all variates. Official
implementation of SOFTS is available at this repository: SOFTS.

TimeXer [38]: TimeXer is a Transformer-based method that can simultaneously leverage endogenous
and exogenous variate information. It captures internal information of time series via patch-wise
self-attention while integrating external time series information via variate-wise cross-attention,
thereby achieving accurate forecasting. Official implementation of TimeXer is available at this
repository: TimeXer.

iTransformer [13]: iTransformer is a Transformer-based method that embeds the entire time series
of each variate as a token and inverts the Transformer’s role to apply the attention and feed-forward
network on the variate dimension. It models series-wise dependencies via multivariate correlating,
making it proficient in capturing and learning cross-variate information. Official implementation of
iTransformer is available at this repository: iTransformer.

SegRNN [11]: SegRNN is an RNN-based method that introduces Segment-wise Iterations and
Parallel Multi-step Forecasting (PMF) to significantly reduce the required recurrent iterations for
forecasting, achieving remarkable performance and inference speed. Official implementation of
SegRNN is available at this repository: SegRNN.

PatchTST [20]: PatchTST is a Transformer-based method that considers channel independence
between variates and adopts a Vision Transformer-like strategy [2], segmenting time series into
smaller, semantically richer patches. It models patch-wise dependencies, thereby enhancing local
information processing for each variate. Official implementation of PatchTST is available at this
repository: PatchTST.

Crossformer [50]: Crossformer is a Transformer-based method that introduces the Dimension-
Segment-Wise (DSW) embedding and Two-Stage Attention (TSA) layer. It models patch-wise
dependencies across multiple variates, allowing it to effectively learn cross-time and cross-variate
information. Official implementation of Crossformer is available at this repository: Crossformer.

TimesNet [40]: TimesNet is a Frequency-domain integrated CNN-based method that extends 1D
time series into 2D space with a Fast Fourier Transform (FFT) for better time series representation.
This improves its capability for learning multi-periodicity and extracting complex long short-term
temporal patterns. Official implementation of TimesNet is available at this repository: TimesNet.

The Time-Series-Library provided by TimesNet [40] offers a fair implementation of baseline
models. It is built on the source code and configurations provided by each model’s original paper.

A.3 Implementations

All the models and experimental frameworks are implemented entirely in Python and built upon
PyTorch 2.0 [22]. All the experiments reported in this paper are conducted on a 16-core AMD
EPYC 9654 CPU and a single NVIDIA RTX 4090 GPU. We select Adam [9] as the optimizer and
MSE loss to learn the model parameters. The learning rate is scheduled to follow an exponential
decay pattern during training, which is halved at the end of each epoch. The number of training
epochs is determined using an early stopping strategy, where the training is stopped when the model’s
performance (i.e., loss) ceases to improve on the validation set for a maximum of 3 times.

For experimental fairness, throughout the experiments, we did not perform any hyperparameter
tuning for any of the baseline models or models equipped with IF. Instead, to ensure consistency
and accurately assess our approach, all models used the same hyperparameters before and after
applying IF. All baseline methods and their hyperparameters, scripts, and experimental frameworks
are strictly followed by the Time-Series-Library repository provided by TimesNet [40], which is
a comprehensive and fair platform for time series analysis.
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Loss Function In our experiments, all models are trained by minimizing the MSE loss to optimize
their model parameters. Given the predicted future time series Ŷ ∈ RL×N and the corresponding
ground truth Y ∈ RL×N , where L denotes the forecasting horizon and N represents the number of
variates, the MSE loss between Ŷ and Y is defined as follows:

LMSE(Ŷ,Y) =
1

LN

L∑
i=1

N∑
j=1

(
Ŷi,j −Yi,j

)2

, (7)

where Ŷi,j ,Yi,j ∈ R are the value of the time series at the i-th time step for the j-th variate.

Evaluation Metrics To align with previous works , we evaluate the performance of models with
two metrics: the Mean Squared Error (MSE) and the Mean Absolute Error (MAE). In multivariate
time series forecasting, given the predicted series Ŷ and the true series Y,

Mean Squared Error (MSE):

MSE(Ŷ,Y) =
1

LN

L∑
i=1

N∑
j=1

(
Ŷi,j −Yi,j

)2

, (8)

Mean Absolute Error (MAE):

MAE(Ŷ,Y) =
1

LN

L∑
i=1

N∑
j=1

∣∣∣Ŷi,j −Yi,j

∣∣∣ . (9)

B Algorithmic Details

We provide a pseudocode of IF’s algorithmic details, clearly demonstrating its step-by-step process
for time series forecasting. Note that: 1) MLP{ amp, sin, cos} : RD+T 7→ RP are nonlinear neural
networks with two dense layers, which are applied to the last dimension of the input, 2) Concatenate
is the concatenation operation that concatenates tensors at their last dimension.

Algorithm 1 Implicit Forecaster

Define: input length T ; output length L; variates number N ; model dimension D; spectrum size P
Require: encoder representation Xenc ∈ RN×D; input time series X ∈ RT×N

Ensure: output time series Ŷ ∈ RL×N

1: ▷ Discrete Fourier Transform the input time series, taking amplitudes and phases.
2: S = F(X⊤) ▷ S ∈ CN×T

3: A = |S| ▷ A ∈ RN×T
≥0

4: ϕ = arg(S) ▷ ϕ ∈ [−π, π]N×T

5: ▷ Run Amplitude Head, predict amplitudes.
6: Â = |MLPamp(Concatenate(Xenc,A))| ▷ Â ∈ RN×P

≥0

7: ▷ Run Phase Head, predict phases.
8: α̂ = Tanh(MLPsin(Concatenate(Xenc,ϕ))) ▷ α̂ ∈ [−1, 1]N×P

9: β̂ = Tanh(MLPcos(Concatenate(Xenc,ϕ))) ▷ β̂ ∈ [−1, 1]N×P

10: ϕ̂ = atan2(α̂, β̂) ▷ ϕ̂ ∈ [−π, π]N×P

11: ▷ Combine predicted waves through inverse Discrete Fourier Transform.
12: Ŷ = F−1(Â · ejϕ̂) ▷ Ŷ ∈ RN×P

13: ▷ Take the part within the output length.
14: Ŷ = Crop:L(Ŷ

⊤) ▷ Ŷ ∈ RL×N

15: return Ŷ
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C Statistical Significance Test

Error Bar We evaluate the robustness of IF across different random seeds using six datasets. Table
6 reports the standard deviations of the Transformer’s performance when equipped with IF over five
random runs, demonstrating that IF yields consistently stable results.

Table 6: This table presents the performance robustness when the standard Transformer is equipped
with IF. The results are obtained from 5 random runs.

Dataset ETTh2 ECL Weather

Horizon MSE MAE MSE MAE MSE MAE

96 0.152± 0.000 0.272± 0.002 0.132± 0.000 0.229± 0.000 0.151± 0.002 0.199± 0.001
192 0.181± 0.002 0.296± 0.002 0.147± 0.001 0.244± 0.000 0.197± 0.001 0.244± 0.002
336 0.195± 0.002 0.307± 0.002 0.161± 0.001 0.262± 0.001 0.237± 0.004 0.274± 0.003
720 0.223± 0.005 0.328± 0.003 0.188± 0.003 0.289± 0.004 0.301± 0.001 0.319± 0.003

Dataset PEMS03 PEMS07 PEMS08

Horizon MSE MAE MSE MAE MSE MAE

12 0.058± 0.001 0.160± 0.001 0.052± 0.001 0.144± 0.001 0.062± 0.000 0.163± 0.000
24 0.074± 0.002 0.181± 0.002 0.063± 0.001 0.157± 0.001 0.077± 0.001 0.183± 0.001
48 0.100± 0.002 0.209± 0.002 0.084± 0.002 0.185± 0.002 0.107± 0.002 0.218± 0.002
96 0.145± 0.004 0.259± 0.003 0.120± 0.002 0.221± 0.002 0.165± 0.002 0.273± 0.002

Paired t-test To verify whether the improvement of the model by IF is statistically significant,
we have also repeated the experiments across random runs and conducted a paired t-test to further
validate the significance of the performance gain. Specifically, we applied IF to the Transformer
backbone while keeping all hyperparameters identical (including the random seed) before and after
applying IF to ensure a strictly fair comparison. For the paired t-test, we test the hypothesis that the
Transformer equipped with IF achieves a significantly lower MSE than without IF. The experimental
results averaged over 4 prediction lengths are as follows:

Table 7: Performance comparison of the standard Transformer without and with IF. Significance
levels: * p < 0.05, ** p < 0.01, *** p < 0.001, n.s. not significant.

Transformer (MSE) Original w/ IF p-value Significance

ETTh1 0.539 ± 0.001 0.504 ± 0.002 1.98 × 10−5 ***
ETTh2 0.200 ± 0.001 0.188 ± 0.001 4.68 × 10−4 ***
ETTm1 0.508 ± 0.001 0.493 ± 0.003 1.04 × 10−3 **
ETTm2 0.155 ± 0.001 0.148 ± 0.001 1.23 × 10−5 ***
ECL 0.162 ± 0.001 0.159 ± 0.000 5.71 × 10−3 **
Traffic 0.620 ± 0.001 0.550 ± 0.002 7.85 × 10−4 ***
Weather 0.228 ± 0.000 0.220 ± 0.000 2.15 × 10−5 ***
Exchange 0.406 ± 0.004 0.297 ± 0.003 1.31 × 10−5 ***
ILI 2.985 ± 0.013 2.770 ± 0.053 1.03 × 10−2 *
PEMS03 0.123 ± 0.001 0.095 ± 0.000 9.71 × 10−6 ***
PEMS04 0.152 ± 0.022 0.099 ± 0.006 3.67 × 10−2 *
PEMS07 0.103 ± 0.001 0.081 ± 0.001 6.70 × 10−6 ***
PEMS08 0.176 ± 0.011 0.104 ± 0.002 1.67 × 10−3 **
Solar 0.188 ± 0.001 0.189 ± 0.001 5.44 × 10−1 n.s.

From Table 7, it is evident that the performance of our method is considerably robust, and the
proposed IF module is stably and statistically significantly outperforms the Transformer’s original
MLP-based point-wise prediction method (in 13 out of 14 datasets).
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D Showcases

D.1 Model Prediction Visualisations

We provide visualisations of model forecasts as supplementary showcases, offering a clearer com-
parison between baseline models and their enhanced versions with the IF decoder. The left column
shows the predictions from the baseline models, while the right column shows their predictions
after incorporating with IF. The forecasts from each model on the ECL and PEMS03 datasets are
illustrated in Figure 5–6, where the visual comparisons clearly show that incorporating IF leads to
more accurate and aligned predictions.
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Figure 5: Visualization of input-96-output-96 results on the ECL dataset
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Figure 6: Visualization of input-96-output-96 results on the PEMS03 dataset
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D.2 Decoder Prediction Visualisations

We further provide forecast visualisations of the Transformer equipped with different decoders (i.e.,
Implicit Forecaster, Linear Forecaster, MLP Forecaster, and Transformer Decoder). The results on
the ETTh2 and ILI datasets are shown in Figure 7–8, where IF produces visibly more accurate and
smoother predictions compared to the other decoders.
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Figure 7: Visualization of input-96-predict-96 results on the ETTh2 dataset
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Figure 8: Visualization of input-36-predict-60 results on the ILI dataset

E Full Results

Table 8 provides the complete multivariate time series forecasting results of all baseline models across
14 datasets, along with their enhanced versions equipped with the proposed Implicit Forecaster (w/
IF). The results show that IF brings consistent and substantial performance improvements in most
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cases. The more pronounced gains in MSE compared to MAE also indicate that IF enhances the
model’s global views of the future time series, leading to more accurate forecasts.

Table 8: The comprehensive results of multivariate time series forecasting. The lookback window
length is set to T = 36 for the ILI and T = 96 for the others. Avg means the average result from all
four prediction lengths.

Models SOFTS w/ IF TimeXer w/ IF iTransformer w/ IF SegRNN w/ IF PatchTST w/ IF Crossformer w/ IF TimesNet w/ IF
(2024) (Ours) (2024) (Ours) (2024) (Ours) (2023) (Ours) (2023) (Ours) (2023) (Ours) (2023) (Ours)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
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96 0.442 0.461 0.426 0.458 0.423 0.457 0.420 0.461 0.447 0.469 0.456 0.474 0.432 0.463 0.436 0.467 0.425 0.457 0.411 0.453 0.437 0.476 0.437 0.474 0.484 0.501 0.433 0.475
192 0.493 0.495 0.469 0.489 0.487 0.503 0.461 0.494 0.495 0.503 0.490 0.503 0.480 0.497 0.467 0.490 0.477 0.494 0.485 0.500 0.487 0.505 0.581 0.563 0.542 0.536 0.498 0.521
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720 0.667 0.602 0.618 0.595 0.668 0.612 0.637 0.618 0.662 0.601 0.660 0.608 0.659 0.608 0.689 0.631 0.678 0.607 0.601 0.582 0.862 0.696 0.684 0.630 0.752 0.657 0.662 0.637

Avg 0.533 0.519 0.506 0.516 0.527 0.525 0.510 0.528 0.535 0.525 0.535 0.529 0.524 0.523 0.523 0.526 0.533 0.522 0.498 0.511 0.607 0.570 0.587 0.564 0.596 0.568 0.535 0.546
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192 0.223 0.253 0.215 0.255 0.241 0.293 0.240 0.276 0.240 0.277 0.225 0.268 0.244 0.304 0.240 0.288 0.247 0.294 0.235 0.272 0.231 0.281 0.224 0.287 0.256 0.281 0.221 0.274
336 0.238 0.263 0.218 0.262 0.257 0.303 0.243 0.282 0.258 0.291 0.246 0.287 0.259 0.304 0.248 0.291 0.257 0.296 0.237 0.281 0.249 0.298 0.236 0.293 0.288 0.282 0.222 0.280
720 0.234 0.264 0.210 0.263 0.251 0.297 0.237 0.281 0.255 0.291 0.238 0.285 0.249 0.295 0.245 0.291 0.246 0.293 0.233 0.278 0.522 0.539 0.235 0.294 0.285 0.295 0.218 0.271

Avg 0.222 0.253 0.207 0.253 0.239 0.290 0.231 0.272 0.241 0.278 0.228 0.271 0.244 0.298 0.238 0.286 0.240 0.288 0.229 0.272 0.299 0.344 0.222 0.283 0.260 0.273 0.212 0.270
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